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Abstract—Deep neural networks have recently achieved break-
throughs in sound generation with text prompts. Despite their
promising performance, current text-to-sound generation models
face issues on small-scale datasets (e.g., overfitting), significantly
limiting their performance. In this paper, we investigate the use
of pre-trained AudioLDM, the state-of-the-art model for text-to-
audio generation, as the backbone for sound generation. Our
study demonstrates the advantages of using pre-trained models for
text-to-sound generation, especially in data-scarcity scenarios. In
addition, experiments show that different training strategies (e.g.,
training conditions) may affect the performance of AudioLDM
on datasets of different scales. To facilitate future studies, we
also evaluate various text-to-sound generation systems on several
frequently used datasets under the same evaluation protocols,
which allow fair comparisons and benchmarking of these methods
on the common ground.

Index Terms—Sound generation, Auditory evaluation, Bench-
mark system, Pre-trained networks, Transferring network

I. INTRODUCTION

The development of deep learning models has led to a surge
of interest in sound generation. Different strategies have been
developed for sound generation tasks with input contents as
diverse as tag [1], text [2], [3] and video [4]. Sound generation
systems are useful tools for content creation in applications
such as virtual reality, movies, music, and digital media [5]–[7].

Recently, significant progress has been achieved in high-
fidelity text-to-sound generation [2], [8], [9]. Such sound
generation systems are usually data-hungry to train. For
example, AudioGen [2] collected ten different datasets for
training. However, this is not viable in some real-world
applications, (e.g., animal sound and environmental sound
generation), where the collection and labelling work for this
specific domain is a time-consuming and costly process, leading
to datasets of limited scale in practice. How to overcome the
data scarcity issue is a significant challenge in sound generation
research. Several methods have been proposed to address this
issue. Rongjie et al. [10] proposed to augment the quantity
of data by generating novel combinations of sound events,
while this approach is not suitable for scenarios with limited
categories. Given these considerations, it is intuitive to ask:
can we find an effective solution to train a sound generative
model with a small-scale dataset?

Previous studies have shown that pre-trained models can
improve performance in tasks with limited data [11], [12].
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These models are obtained by pre-training on a massive corpus
and can be fine-tuned into downstream tasks. Over the last few
years, pre-training strategies have achieved enormous success
across multiple fields including text [13]–[15], image [16],
[17] and audio [18]–[20]. However, the effectiveness of a
pre-trained model for text to sound generation is an under-
explored topic. This paper takes the first step on investigating
the effectiveness and feasibility of improving text-to-sound
generation with pre-trained AudioLDM [9], the state-of-the-
art audio generation model. Our results show that pre-trained
models can achieve better performance on sound generation, es-
pecially for small-scale datasets. Moreover, empirical evidence
suggests that the performance of AudioLDM on varying-size
datasets can be influenced by the training conditions across
different modalities.

Besides, previous sound generation studies used a range of
different methodologies for evaluation, making it difficult for
us to evaluate the model performance fairly. Aiming to provide
an efficient and reliable reference for further sound generation
research, this paper introduces a new benchmark with pre-
trained AudioLDM on four commonly used audio datasets:
AudioCaps [21], AudioSet [22], Urbansound8K (US8K) [23]
and ESC50 [24]. Furthermore, our new benchmark contains
most of the evaluation metrics applied in previous works [2], [8],
[9], including Fréchet Distance (FD), Inception Score (IS) [25],
Fréchet Audio Distance (FAD) [26] and Kullback-Leibler (KL)
divergence. With several qualitative experiments, we also
provide insights into the effectiveness of these metrics in
evaluating sound generation systems. Our contributions are
as follows:

• We demonstrate that transferring the pre-trained Audi-
oLDM is beneficial for sound-generation tasks in both
sample quality and training efficiency, especially for small-
scale datasets.

• We benchmark the sound generation task by presenting
the result of AudioLDM with multiple evaluation metrics
on four commonly used sound datasets.

II. RELATED WORK

Conditional sound generation. Kong et al. [27] took the first
step on conditional generation by taking labels as input and gen-
erating waveforms with recurrent neural network (RNN). Then,
Liu et al. [1] synthesised sound with latent discrete features



obtained from a vector quantised-variational autoencoder (VQ-
VAE) [28] in the frequency domain (e.g. mel-spectrogram). By
compressing the mel-spectrogram into a sequence of tokens,
the model can generate sounds with long-range dependencies.
Recently, remarkable progress has been made in text-to-sound
generations. Diffsound [8] generated audio with a diffusion-
based text encoder, a VQ-VAE-based decoder and a generative
adversarial network (GAN)-based vocoder. Taking texts as
input, Diffsound utilized a contrastive language image pre-
training (CLIP) model [29] for text embedding before sending
the condition to the encoder. To alleviate the scarcity of
text-audio pairs, they proposed a text-generating strategy by
combining mask tokens and sound labels. AudioGen [2] used
a similar encoder-decoder structure to Diffsound [8], while
generating waveform directly instead of using a vocoder. They
used a transformer-based encoder to generate discrete tokens
and a pre-trained Transfer Text-to-Text Transformer (T5) [30]
for text embedding. To increase the quantity of sound, they
mixed audio samples at various signal-to-noise ratios (SNR)
and collect 10 large datasets.
Evaluation metrics for sound generation. Since subjective
metrics for sound-generating systems usually require a huge
amount of time and workload, various objective metrics were
applied for this task. However, previous works often adopted
different evaluation metrics, which makes it difficult to get in-
tuitive comparisons. Kong et al. [27] used Inception Score [25]
as the criterion. Liu et al. [1] trained a sound classifier to verify
the sample quality. Diffsound [8] applied Fréchet Inception
Distance (FID) [25] and Kullback-Leibler (KL) divergence to
compute the sample fidelity, as well as a pre-trained audio
caption transformer (ACT) to calculate a sound-caption-based
loss. AudioGen [2] evaluated the result with KL divergence
and Fréchet Audio Distance (FAD).

III. PROPOSED METHOD

A. AudioLDM

Our experiments are carried out with AudioLDM [9], a
continuous latent diffusion-based model (LDM) for text-to-
sound generations. Inspired by previous text-to-sound models,
AudioLDM adopts an encoder, decoder, and vocoder architec-
ture. By comparison, the text encoder in previous studies [2],
[8], [10] is replaced by a Contrastive Language-Audio Pre-
training (CLAP) model. Specifically, the CLAP consists of
two encoders, a text encoder ftext that encodes text description
y into text embedding Ey and an audio encoder faudio that
computes audio embedding Ex from audio samples x. CLAP
trains two encoders along with two projection layers using a
symmetric cross-entropy loss, resulting in an aligned audio-
text latent space. By utilizing the audio embedding during
training and text embedding during sampling, AudioLDM
can significantly reduce the demand for text-sound pairs and
enable a self-supervised paradigm of LDM optimization. The
latent diffusion model contains two processes: 1) a forward
process that gradually transforms the data into a standard
Gaussian distribution; and 2) a reverse process that generates
data from the Gaussian distribution by denoising in reverse

order as the forward process. During the forward process, the
continuous latent representation z0 from the mel-spectrogram
is transformed into a standard Gaussian distribution zn by
gradually adding a scheduled Gaussian noise in N steps. The
transition probability of each time step n is:

q(zn|zn−1) = N (zn;
√
1− βnzn−1, βnI), (1)

q(zn|z0) = N (zn;
√
ᾱnz0, (1− ᾱn)ϵ), (2)

where ϵ ∼ N (0, I) denotes the Gaussian noise with the noise
level presented as αn = 1− βn . The latent diffusion model
is trained with a re-weighted objective [9], [31], given by

Ln(θ) = Ez0,ϵ,n ∥ϵ− ϵθ(zn, n,E
x)∥22 , (3)

where θ denotes the trainable parameters in LDM. Benefiting
from the aligned audio-text space from CLAP, the reverse
transition probability, pθ(zn−1|zn,E

y), can be parameterized
by both ϵθ(zn, n,E

y) and ϵθ(zn, n,E
x) [9]. Reverse diffusion

is then performed to generate data from a sample of standard
Gaussian distribution with the reverse transition probability [31].
We will compare the difference between conditioning with Ex

and Ey in our experiments.

B. Fine-tuned AudioLDM

The AudioLDM was trained originally with a combina-
tion of four large datasets, including AudioSet, AudioCaps,
Freesound1, and BBC Sound Effect library (BBC SFX)2. With
totally 3.3M ten-second sound clips, AudioLDM is capable of
generating a wide range of sound, including speech and music.
However, for certain sound synthesis tasks (e.g., reproducing
dog barking in the UrbanSound8K (US8K) dataset or keyboard
typing in the ESC50 dataset), the quality of the generated
sounds decreases considerably. In addition, AudioLDM may
suffer from issues, such as overfitting or limited coverage of
sound events when trained on small-scale datasets, as shown
in the results in Section IV.

To further improve the performance of AudioLDM on a
specific domain, we fine-tune and evaluate the pre-trained
AudioLDM on three smaller datasets (i.e. US8K, ESC50, and
AudioCaps). In order to conduct comprehensive comparisons on
fine-tuned AudioLDM among datasets of various scales, we first
benchmark this task by establishing the baseline results of the
pre-trained AudioLDM on four commonly used sound datasets.
During the fine-tuning process, we freeze the parameters of
CLAP and the VAE encoder, leaving only the latent diffusion
model for training. To study the effect of model pre-training, we
also train and evaluate AudioLDM on different datasets from
scratch. Besides, it was found in [9] that audio embedding is
better than text embedding as the model condition information.
To examine this observation in more datasets, we adopt a
similar experimental setting and fine-tune AudioLDM with
both text embedding and audio embedding as conditioning
information. The performance comparison of these training
strategies with various datasets is presented in next section.

1https://freesound.org/
2https://sound-effects.bbcrewind.co.uk/search

https://freesound.org/
https://sound- effects.bbcrewind.co.uk/search


IV. EVALUATIONS AND EXPERIMENTS

A. Dataset

We perform experiments on four common datasets with
different volumes. Two relatively small datasets used are US8K
and ESC50. US8K contains 8000 sound clips with 10 classes
and ESC50 has 50 classes with only 40 samples for each
class. We randomly select 870 samples in US8K and 400
samples in ESC50 for evaluation. Apart from ESC50 and
Urbansound8K, we also perform experiments on AudioCaps
and AudioSet to further enhance our study. AudioSet is the
largest dataset with 527 text labels and around 5000 hours of
sound. AudioCaps contains around 47000 ten-second audio
data with more diverse sound events. We establish the baseline
results of AudioLDM on all four datasets, while we fine-
tune it on the three smaller datasets (i.e. US8K, ESC50 and
AudioCaps). Although AudioCaps is included for pre-training
AudioLDM, we find that further fine-tuning on AudioCaps can
improve model performance on the related evaluation set.

B. Evaluation

The evaluation is performed by comparing a set of generated
audio files against a set of target audio files. For model eval-
uation, we follow the metrics used by AudioLDM, including
Fréchet Distance (FD), Inception Score (IS), Fréchet Audio
Distance (FAD), and Kullback–Leibler (KL) divergence. All
four metrics are calculated based on the distance between
logits value or embedding from audio classifiers. Specifically,
IS calculates the entropy of label distribution, where a higher IS
indicates a larger variety with vast distinction. KL divergence
measures the similarity between generated and target audio
by comparing the logits distributions. FAD first computes the
multivariate Gaussian of two embedding values collected from
a pre-trained VGGish [32]. Then, this score calculates the
Fréchet distance between the Gaussian mean and variance.
Both KL and FAD indicate better fidelity with lower scores.
Besides the three common measurements (IS, FAD and KL)
used in previous works [2], [8], [27], AudioLDM also adopt
FD, which has a similar idea as FAD but uses PANNs [33], a
pre-trained audio pattern recognition model, as the backbone
classifier for feature embedding. To compare the effectiveness
of these metrics, we perform evaluations between a set of audio
files and their corrupted version by the following:
(1) Adding noise and random masking. We add Gaussian noise
and mask content on the mel-spectrogram domain. As Figure 1
shows, all the metrics can detect with a repaid fall or rise.
(2) Adding interference sound. We randomly select ten irrele-
vant classes of audio clips and mix them directly with the target
sound under the same SNR to verify whether these interfered
sounds can be detected. As shown in Figure 1, we can see
that KL and IS do not present significant changes with the
increase of corrupted sounds. In comparison, FD and FAD can
effectively detect changes with an apparent increase in scores.
(3) Adding re-permutation order. We testify the sensitivity
of these metrics when acoustic events are placed in the
wrong order. To simulate this change, the ground-truth data

Fig. 1. The metrics are evaluated with the increase of the percentage (from
0 to 1) of pre-processed data on: 1) adding noise (random Gaussian noise);
2) masking value (one-second-sound); 3) making disordered sound events; 4)
adding interfering sound events. A higher IS and a lower KL, FD, and FAD
indicate better sample quality.

is composed of a group of different sound events and we
randomly permute their orders. Figure 1 shows that with the
increase of permuted events, only FD presents an increasing
trend while other metrics stay stable with little fluctuations,
indicating that only the FD score is capable on classifying
sounds with order.

TABLE I
THE BASELINES OF THE PRE-TRAINED AUDIOLDM ON FOUR DATASETS

Dataset Test Condition FD↓ IS↑ KL↓ FAD↓

ESC50 Text 60.63 5.55 3.01 5.95
Audio 47.46 6.68 2.08 4.81

US8K Text 31.20 3.88 2.20 10.00
Audio 32.79 4.04 1.44 13.74

AudioCaps Text 23.63 6.68 2.36 4.94
Audio 21.37 6.65 1.78 2.18

AudioSet Text 20.30 7.56 2.34 4.26
Audio 19.04 6.72 1.63 1.52

C. Results

Benchmark Study. As shown in Table I, we evaluate the
performance of pre-trained AudioLDM3 as our baselines
for text-to-sound generations. Note that we do not perform
any fine-tuning on AudioLDM in this section. Although the
open-sourced version of AudioLDM is trained with audio
embeddings, AudioLDM can perform sampling with either
audio or text embedding. Table I shows the effect of conditions
on different modalities, where AudioLDM conditioned with
audio embedding performs better than text embedding in most
cases. This suggests that the distribution of audio and text
embedding is not completely aligned, and audio embedding
is a more precise conditioning signal for sound generation,
providing better sample quality.
Fine-tuning Study. Table II shows the experimental results of
this fine-tuning study on smaller datasets, including ESC50,
US8K and AudioCaps. In contrast to Table I, all the experiments

3https://github.com/haoheliu/AudioLDM

https://github.com/haoheliu/AudioLDM


TABLE II
THE COMPARISON BETWEEN DIFFERENT PRE-TRAINING STRATEGIES. EXPERIMENTS WITHOUT PRE-TRAINING INVOLVE BUILDING NEW MODELS FROM

SCRATCH. AUDIO AND TEXT INDICATE WHETHER THE MODEL IS TAKING AUDIO EMBEDDING OR TEXT EMBEDDING AS THE CONDITION IN TRAINING.

Dataset Pre-training Train Condition Train Steps (K) FD ↓ IS ↑ KL ↓ FAD ↓

ESC50

% Audio 240 44.75 7.44 3.31 4.02

% Text 160 30.74 10.22 1.84 3.28

! Audio 180 36.43 11.15 2.15 4.41

! Text 80 22.38 12.98 1.56 2.66

US8K

% Audio 160 33.69 3.73 2.04 5.75

% Text 350 28.45 5.00 1.87 4.45

! Audio 20 31.21 3.84 2.11 7.39

! Text 240 28.44 4.91 1.88 4.88

AudioCaps

% Audio 480 24.04 7.12 2.20 2.98

% Text 480 24.84 6.91 2.25 2.47

! Audio 80 23.57 7.21 2.09 2.98

! Text 240 25.78 7.95 2.26 1.67

in this section only evaluate with text embedding as the input
condition since we mainly focus on text-to-sound generation.
We notice that the pre-trained AudioLDM is more advantageous
than the model trained from scratch in most cases. With
only 32 samples in each class, the performance of ESC50
can be significantly improved with pre-training. On US8K,
the performance of pre-trained AudioLDM is slightly lower,
which might be attributed to: 1) US8K is large enough for
model optimization, with around 800 samples for each class;
2) US8K only contains 10 sound classes while the pre-trained
AudioLDM is capable of generating sound with more diversity,
which might degrade model performance on US8K evaluation
set. Additionally, the pre-trained model can improve generation
quality on AudioCaps, particularly on the FAD scores. We also
notice that fine-tuning with text embedding on AudioCaps can
further achieve a better IS score. This reason could be that the
text embeddings provide weaker conditions as compared with
audio embeddings, leading to results with less restriction and
more diversity.

Furthermore, AudioLDM is trained in a self-supervised way
using audio embedding as conditioning information because
training data can be easily scaled up with this scheme. It
was found earlier that taking audio embedding as the training
condition was better than text embedding. However, our
experiment shows this is not always the case on different
datasets. As shown in Table II, results on small-scale datasets
are usually better using text embedding. We believe this is
because insufficient audio training data leads to sub-optimal
learning of generative models, such as overfitting. This is also
supported by our results, which show that training models
with audio embedding achieve better performance with fewer
training steps, such as 20k steps in US8K and 80k steps in
AudioCaps. Conversely, texts or labels provide less detailed
and diverse conditions, which can regularize the model to learn
data distribution with less chance of overfitting, leading to
model convergence with more training steps at the same time.

Fig. 2. The performance of AudioLDM on ESC50 as a function of thousand
training steps. The four curves show the AudioLDM optimized with 1) audio
embeddings; 2) text embeddings; 3) text embedding with the pre-trained model
parameters; and 4) audio embedding with the pre-trained model parameters.

Figure 2 illustrates the performance of AudioLDM on
different training epochs with and without pertaining and
different modalities as condition information. The experiment
is performed on the ESC50 dataset. We notice that 1) the pre-
trained model can reach coverage quickly with text-embedding,
within 20k training steps; 2) AudioLDM can achieve better
performance with text-embedding on ESC50; 3) AudioLDM
trained from scratch converges more slowly with a larger
number of steps as compared with the pre-trained model.

V. CONCLUSION

We have presented a study of using pre-trained AudioLDM
for text to sound generation tasks, with various settings and
datasets. We have shown that the pre-trained model can improve
the sample quality and reduce the training time, especially for
datasets of relatively small scales. This serves as evidence for
future studies on audio generation in data-scarcity scenarios.
In addition, we have found that text embedding is preferred
as the condition information on small-scale datasets, which
alleviates overfitting during training. Finally, a new benchmark
is established for text to sound generation tasks with four
commonly used datasets. These baseline results can be used
as benchmarks for future studies of text-to-sound generation.
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